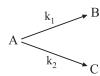
ADVANCED KINETICS Section - 7

1. Parallel / Side Reactions (Elementary Reactions):



$$\left[\because \text{Rate of Re action} = k_1[A] = -\frac{d[A]}{dt} \right|_1$$

Similarly, Rate of consumption of 'A' in $A \longrightarrow C : \frac{d[A]}{dt}\Big|_{2} = -k_{2}[A]$

Overall (net) rate of consumption of 'A' = $\frac{d[A]}{dt} = \frac{d[A]}{dt} \Big|_{1} + \frac{d[A]}{dt} \Big|_{2}$ \Rightarrow

$$=-k_1[A]-k_2[A]$$

$$\Rightarrow \frac{d[A]}{dt} = -(k_1 + k_2)[A] = -k_{\text{overall}}[A] \qquad \dots (i)$$

The Overall reaction is also of the same order (here, I^{st} order) with $k_{overall} = k_1 + k_2$ \Rightarrow

Check yourself that solution of (i) is:

$$[A]=[A]_0 e^{-(k_1+k_2)t}$$

Also, from the rate equation : $\frac{d[B]}{dt} = +k_1[A]$ and $\frac{d[C]}{dt} = +k_2[A]$

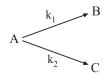
Substituting the value of [A] at(t) in the differential equation for [B] and [C] and integrating, we get:

$$[B] = [B]_0 + \int_0^t k_1 [A]_0 e^{-(k_1 + k_2)t} dt = [B]_0 + \frac{k_1 [A]_0}{(k_1 + k_2)} \left(1 - e^{-(k_1 + k_2)t} \right)$$

$$[C] = [C]_0 + \int_0^t k_2 [A]_0 e^{-(k_1 + k_2)t} dt = [C]_0 + \frac{k_2 [A]_0}{(k_1 + k_2)} \left(1 - e^{-(k_1 + k_2)t} \right)$$

Also, if $[B]_0$ and $[C]_0 = 0$, we get: $\frac{[B]}{[C]} = \frac{k_1}{k_2}$

Illustrating the concept :



 $k_1 = 10^{-3} s^{-1}$ and $k_2 = 2 \times 10^{-3} s^{-1}$. Find the overall half life of the reaction.

SOLUTION:

$$k_{overall} = k_1 + k_2 = 3 \times 10^{-3} s^{-1}$$

 $t_{1/2} = \frac{0.693}{k_{out}} = \frac{0.693}{3 \times 10^{-3}} s = 231 sec$. [Note: Reactions are of first order].

2. Consecutive Reactions (Elementary Reactions):

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

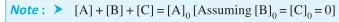
$$\frac{d[A]}{dt} = -k_1[A] \qquad(i)$$

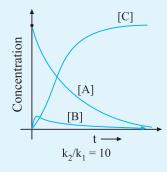
$$\frac{d[B]}{dt} = +k_1[A] - k_2[B] \qquad(ii)$$

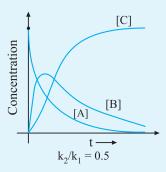
$$\frac{d[C]}{dt} = +k_2[B] \qquad(iii)$$

On solving the above differential equations, we get:

[A]=[A]₀
$$e^{-k_1 t}$$
(iv)
[B]=[A]₀ $\frac{k_1}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$ (v)
[C]=[A]₀ $\left(1 + \frac{k_1 e^{-k_2 t} - k_2 e^{-k_1 t}}{k_2 - k_1} \right)$ (vi)







 $| [B] \text{ is maximum when } \frac{d[B]}{dt} = 0 \\ \Rightarrow k_1[A] = k_2[B]_{\text{max.}} \qquad \dots \text{(vii)}$ $| Using (v), \frac{d[B]}{dt} = -k_1 e^{-k_1 t} + k_2 e^{-k_2 t} = 0 \Rightarrow k_1 e^{-k_1 t} = k_2 e^{-k_2 t} \\ \Rightarrow t = \frac{1}{k_2 - k_1} \ell n \frac{k_2}{k_1}$

Thus, at t = $\frac{1}{k_2 - k_1} \ell$ n $\frac{k_2}{k_1}$, [B] is maximum.

Illustration - 16
$$A \xrightarrow{k_1=0.1s^{-1}} B \xrightarrow{k_2=1/30s^{-1}} C$$

Find the time at which concentration of B is maximum. Also, find the concentration of A, B, and C at this instant. Take $[A]_0 = 1M$

SOLUTION:

[B] is maximum at t =
$$\frac{1}{k_2 - k_1} \ell \, n \, \frac{k_2}{k_1} = \frac{1}{0.1 - 1/30} \ell \, n \, \frac{0.1}{1/30} = 15 \, \ell \, n \, 3 \, \, \text{sec} \, .$$

[A]_{t=15 ln3} = [A]₀ e^{-k₁t}
= 1×e^{-0.1×15ln3} = e^{ln(3^{-1.5})} = 3^{-1.5} =
$$\frac{1}{3\sqrt{3}}$$
 M

When [B] is max:
$$k_1[A] = k_2[B]_{max} \left(\frac{d[B]}{dt} = 0 \right)$$

$$\Rightarrow \frac{1}{10} \times \frac{1}{3\sqrt{3}} = \frac{1}{30} [B]_{\text{max}} \Rightarrow [B]_{\text{max}} = \frac{1}{\sqrt{3}} M$$

Also,
$$[A] + [B] + [C] = [A]_0$$

[C] =
$$1 - \frac{1}{3\sqrt{3}} - \frac{1}{\sqrt{3}} = 1 - \frac{4}{3\sqrt{3}}$$
 M

3. Reversible Reaction (Elementary Reactions):

$$A \xrightarrow{k_1} B$$

Net rate of consumption of 'A' = $\frac{d[A]}{dt}$ = $-k_1[A] + k_2[B]$

Also,
$$[A] + [B] = [A]_0$$
 \Rightarrow $[B] = [A]_0 - [A]$

$$\Rightarrow \frac{d[A]}{dt} = -k_1[A] + k_2([A]_0 - [A])$$

$$\frac{d[A]}{dt} = -(k_1 + k_2)[A] + k_2[A]_0$$

At equilibrium,
$$\frac{d[A]}{dt} = 0$$
 \Rightarrow $k_1[A]_{eq} = k_2[B]_{eq}$

$$\Rightarrow K_{eq} = \frac{[B]_{eq}}{[A]_{eq}} = \frac{k_1}{k_2}$$

Try yourself: Find $[A]_t = ?$ and $[B]_t = ?$